# 基于实数遗传算法的混浊介质光学参数提取

李 飞<sup>1</sup> 张元志<sup>1</sup> 王贻坤<sup>1,2</sup> 朱 灵<sup>1,2</sup> 刘 勇<sup>1,2</sup> 王 安<sup>1</sup>

(<sup>1</sup>中国科学院安徽光学精密机械研究所,安徽 合肥 230031 <sup>2</sup>皖江新兴产业技术发展中心,安徽 铜陵 244000

摘要 混浊介质的光学参数提取在光动力学疗法及光学无创诊断中有着重要意义。提出了一种实数遗传算法,结合逆蒙特卡罗方法及图形处理单元加速技术,从蒙特卡罗模拟得到的介质表面漫反射光的空间分布中提取光学参数。设计了差值平方和适应值函数、随机竞争选择算子、带扩展半径的均匀随机交叉算子、均匀变异算子、冠军变异算子,保证了算法的收敛性和种群的多样性。在  $0 \leq \mu_a \leq 100 \text{ cm}^{-1}$ 和  $0 \leq \mu_s \leq 1000 \text{ cm}^{-1}$ 范围内  $\mu_a$  和  $\mu_s$  提取的平均相对误差分别为 0.25%和 0.58%,均方根误差(RMSE)分别为 0.32 cm<sup>-1</sup>和 1.68 cm<sup>-1</sup>,表明实数遗传算法提取 混浊介质光学参数是可行和准确的。

关键词 医用光学;实数遗传算法;漫反射;光学参数;蒙特卡罗模拟 中图分类号 R318.51 **文献标识码** A **doi**: 10.3788/AOS201333.1217001

## Determination of Optical Parameters of Turbid Media Based on Real Coded Genetic Algorithm

Li Fei<sup>1</sup> Zhang Yuanzhi<sup>1</sup> Wang Yikun<sup>1,2</sup> Zhu Ling<sup>1,2</sup> Liu Yong<sup>1,2</sup> Wang An<sup>1</sup> <sup>(1</sup>Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China <sup>(1)</sup> <sup>(2)</sup> Wanjiang Center for Development of Emerging Industrial Technology, Tongling, Anhui 244000, China <sup>(2)</sup>

**Abstract** Determination of optical parameters of turbid media is quite useful in the photodynamic therapy and optical noninvasive diagnostics. A kind of real coded genetic algorithm incorporated with inverse Monte Carlo method and graphics processing unit based acceleration technology is proposed, which can determine optical parameters from the spatially resolved diffuse reflectance of turbid media by Monte Carlo simulation. Fitness function of accumulated square differences, random tournament selection operator, uniform random crossover operator with extended radius, uniform mutation operator, champion mutation operator are designed to guaranty the algorithm to converge with good population diversity. In the range  $0 \le \mu_a \le 100 \text{ cm}^{-1}$  and  $0 \le \mu_s \le 1000 \text{ cm}^{-1}$ , the average relative errors are 0.25% and 0.58%, and the root mean-square errors (RMSEs) are  $0.32 \text{ cm}^{-1}$  and  $1.68 \text{ cm}^{-1}$  for the absorption coefficient and for the scattering coefficient, respectively, which means that this algorithm is feasible and accurate enough for determination of optical parameters of turbid media.

Key words medical optics; real coded genetic algorithm; diffuse reflectance; optical parameter; Monte Carlo simulation

OCIS codes 170.3660; 170.3890; 170.5280; 170.6935; 170.7050

1 引 言

多数生物组织中同时存在吸收和散射作用,可 建模为混浊介质并用吸收系数 μ<sub>a</sub>、散射系数 μ<sub>s</sub>、各 向异性指数 g 进行描述<sup>[1]</sup>。吸收系数决定了光子 在介质中的生存周期,散射系数决定了光子在介质 中的传播距离<sup>[2]</sup>,共同表征了光和介质的相互作用

收稿日期: 2013-06-24; 收到修改稿日期: 2013-07-26

基金项目:中国科学院知识创新工程青年人才领域专项前沿项目(083RC11124)

作者简介:李飞(1982-),男,博士研究生,主要从事生物医学光子学和随机算法方面的研究。

E-mail: sume. cn@gmail. com

**导师简介:** 王 安(1958—),男,博士,研究员,主要从事光谱学与光谱分析和生物医学光子学方面的研究。 E-mail: wangan@aiofm. ac. cn(通信联系人) 情况,具体表现为光在介质内和介质表面的分布。 如果能够通过对介质表面光分布的非入侵式测量准 确提取光学参数,即可推知光在介质中的分布情况, 这对光动力学疗法及光学无创诊断有着重要意义。 介质表面的光分布即为空间分辨漫反射光(SRR), 可通过光纤探头<sup>[3-5]</sup>、CCD 相机<sup>[6]</sup>等技术获取。

描述光子在混浊介质中传输过程的吸收特性和 散射特性的最常用数学方法是传输理论中的辐射传 输方程(RTE),通常情况下该方程很难得到解析 解,人们提出了多种近似方法和随机统计方法来获 得近似解,如一阶散射、Kubelka-Munk 理论、漫射 近似法、反向倍加法、蒙特卡罗模拟等[7]。一阶散射 仅在散射作用远小于吸收作用且介质厚度很薄的情 况下才能成立;Kubelka-Munk 理论的精度较差;漫 射近似法的前提条件是散射远大于吸收且介质厚度 较厚;反向倍加法需要测量样品的反射和透射,通常 配合积分球使用,无法应用于非入侵式测量。蒙特 卡罗模拟适用于任意几何形状及边界条件,精度较 高,还能用于荧光、时间分辨、生物自发光、偏振等多 种场合,目前已成为一种标准,广泛应用于组织光 学、生物医学光子学、光动力学中各种正问题、逆问 题及对其他精度较低的近似方法的非实验验 ₩E<sup>[8-9]</sup>。

将实验测得的 SRR 曲线和 RTE 的某种近似解 得到的 SRR 曲线进行比较,不断修改光学参数使得 两条曲线的差别尽可能小,当曲线基本重合时即可 认为提取出了目标光学参数。常用的提取方法有神 经网络[4,6,10-12]、最小二乘拟合[13]、多项式回归[3]、 查表法[14]、遗传算法[15]等。神经网络方法以径向多 根收集光纤采集到的数据作为输入,因此针对不同 光纤探头结构建立的模型无法通用,而且只利用了 SRR 曲线上少数几点的数据,误差较大。最小二乘 拟合是一种局部收敛算法,受初始点影响较大,通常 需要多次运行取最优值。多元多项式回归适合对不 明确的非线性关系进行回归,可通过增加次数进行 逼近,误差能做到很小;但次数增大时计算非常复 杂,还有可能导致秩亏问题,而且各系数没有明确的 物理含义,模型较难推广。查表法使用给定光学参 数的多组仿体建立测量值和光学参数之间的关系并 进行插值,建模时基本无需计算,使用时只需查表; 但是仿体的构造过程、仿体材料的粒径分布、检测系 统的噪声、插值运算等都会影响模型的精度,因此查 找表法总是存在一定的系统误差。

本文提出了一种从模拟得出的混浊介质空间分

辦漫反射光分布中提取光学参数的实数遗传算法, 采用图像处理单元加速的蒙特卡罗模拟极大地减少 了运行时间,以光学参数预测值进行蒙特卡罗模拟 得出的 SRR 曲线与目标值进行蒙特卡罗模拟得出 的 SRR 曲线之间的差值平方和作为适应值函数,设 计了随机竞争选择算子、带扩展半径的均匀随机交 叉算子、均匀变异算子、冠军变异算子,以较小的种 群规模和迭代次数实现了参数的准确提取,注意保 持迭代过程中种群的多样性。在生物组织常见光学 参数范围内进行了一系列提取实验。

### 2 基于遗传算法的光学参数提取

在光学参数提取研究中,可针对已知光学参数 的生物组织样本或混浊介质模拟液来验证各种提取 方法,然而实际中常常很难确定这两种情况下光学 参数的精确值。蒙特卡罗模拟得到的光分布情况被 认为和实验数据非常吻合,因而常用于代替真实实 验来评价和改进各种提取方法<sup>[4,6,11]</sup>。以光学参数 的目标值进行蒙特卡罗模拟可得出介质表面的目标 SRR 曲线(*S*<sub>t</sub>),以光学参数的预测值进行蒙特卡罗 模拟可得出介质表面的预测 SRR 曲线(*S*<sub>p</sub>),迭代修 正预测值使得两曲线的差值平方和最小即可提取出 目标光学参数。

#### 2.1 正模型

输入光学参数进行蒙特卡罗模拟得到光在混浊 介质中或介质表面分布情况的过程称为正模型,如 图1所示。蒙特卡罗模拟的基本过程由 Prahl 等<sup>[16]</sup> 给出:1)光子或光子包的初始化;2)随机生成传播距 离并产生运行轨迹;3)根据传播距离移动光子;4)判 定光子是否到达层状结构的边界并判定是否发生全 内反射;5)发生光子的吸收事件;6)判定光子的消



图 1 漫反射光正模型 Fig. 1 Forward model of diffuse reflectance

亡。设定计算模型为:1)介质为均匀半无限大单层 混浊介质;2)无限细光束准直入射介质表面;3)介质 上层为空气;4)不考虑光的波动性和偏振性,不考虑 介质的荧光、自发光等特性。

#### 2.2 逆模型

根据光在混浊介质中或介质表面的分布情况, 迭代修正预测光学参数最终得到目标值的过程称为 逆模型,显然逆模型中需要反复调用正模型。逆模 型的本质是函数的最优化问题,预测光学参数和 S。 与 S<sub>t</sub> 之间的差值平方和并无线性关系,使用传统的 优化手段难以解决。遗传算法以达尔文的进化理论 和孟德尔的遗传理论为基础,以种群个体之间的优 胜劣汰、适者生存来实现问题的最优解搜索。迭代 过程中仅使用适应值作为唯一判定指标,无需任何 先验知识,无需了解目标问题的细节,是一种具有较 强稳健性、并行性和全局收敛性的概率搜索算法,非 常适合此处的逆模型。如图 2 所示,在迭代修正预 测光学参数的过程中即使用了遗传算法。







使用遗传算法迭代修正预测光学参数时都要重新计算  $S_p$ ,根据算法设置的不同可能需要上千次蒙特卡罗计算,若采用通用的蒙特卡罗模拟程序<sup>[17]</sup>,整个迭代过程将极其漫长。基于图形处理单元 (GPU)的蒙特卡罗加速技术是近年来提出的加速 性能较好、性价比较高的一种加速手段<sup>[18-20]</sup>,加速 比可达千量级。使用 Alerstam 等<sup>[18]</sup>开发的 CUDA MCML 和基于开普勒架构的 nVidia GTX650 显 卡,极大地减少了迭代时间。每次蒙特卡罗模拟都 使用 10<sup>7</sup> 光子数,根据输入光学参数的不同设置运 行时间在 0.1~20 s之间。

### 3 遗传算法设计

遗传算法的设计涉及6个要素:参数编码方式、 初始种群设计、适应值函数设计、遗传操作设计、控 制参数和约束条件设置。

#### 3.1 编码方式和种群设计

采用了实数遗传算法(RCGA),以实数参数向 量作为染色体,以实数参数作为染色体中的基因,以 实数数值作为等位基因。RCGA 避免了二进制编 码方式中的海明悬崖问题,求解时能够达到实数表 达范围所允许的任意精度,而且可以设计非常灵活 的交叉、变异算子<sup>[21]</sup>。如图 3 所示,不同的预测参数组 μ<sub>a</sub> 和 μ<sub>s</sub> 构成的染色体表达了遗传算法中的一 个个体,所有个体组成了种群,种群中个体的数量称 为种群规模 N<sub>p</sub>,各光学参数的取值范围即为对应基 因的搜索域。N<sub>p</sub> 取为 50,初始种群中所有个体的 基因在各自搜索域中均匀随机生成。



图 3 遗传算法中种群、个体、染色体、基因示意图

Fig. 3 Schematic diagram of population, individual, chromosome and gene in genetic algorithm

#### 3.2 适应值函数设计

遗传算法中对光学参数预测值的评价由适应值 函数唯一决定,因此该函数的设计至关重要。以种 群中每个个体所代表的一组光学参数预测值进行蒙 特卡罗模拟得出S<sub>p</sub>曲线,以该曲线和目标曲线S<sub>t</sub> 的差值平方和作为适应值函数,该函数的值越小越好:

$$F(\mu_{a}^{p},\mu_{s}^{p}) = \sum_{r} [S_{p}(\mu_{a}^{p},\mu_{s}^{p}) - S_{t}(\mu_{a}^{t},\mu_{s}^{t})]^{2}. (1)$$

#### 3.3 遗传操作设计

遗传操作包括三种基本算子:选择、交叉和变 异。

3.3.1 选择算子

选择算子负责从上一代种群中根据个体的适应 值挑选出较优者放入交配池,交配池中的个体随后 进行交叉操作生成新的个体。设计随机竞争选择算 子,在当前代种群中随机挑选一对个体进行适应值 比较,较差的个体被淘汰并标记,由后续的交叉操作 填充。被淘汰个体的数量由淘汰概率 P。描述,取 为 0.5。该算子使得种群中的最优个体一定能保留 到下一代,隐含了精英保留策略,保证了算法最优解 的收敛性。而且基于竞争的选择算子无需对适应值 函数进行尺度变换,同时较优个体甚至一些较差个 体也都有机会保留到下一代,无需设计复杂的共享 函数也可保证多样性。

3.3.2 交叉算子

交叉算子以参与交叉的父体各基因为操作对象 生成子代的对应基因,是遗传算法中产生新个体的 主要手段。综合 Herrera 等<sup>[21]</sup>给出的常见 RCGA 交叉算子的特点及本研究的需求,提出带扩展半径 的均匀随机交叉算子:从淘汰剩余的个体中随机挑 选两个个体(设为 *x* 和 *y*)进行交叉,综合两个体对 应等位基因之间的距离和搜索域范围设置一个扩展 半径,将两个体等位基因之间范围的两侧都增加扩 展半径,新个体的基因在其中随机产生。

| $R^1_{\mu_{ m a}} = \; \left   \mu^x_{ m a} - \mu^y_{ m a}   ight  ,  R^1_{\mu_{ m s}} \; = \; \left   \mu^x_{ m s} - \mu^y_{ m s}   ight  ,$                                                                                                                                                                                                                                                           | (2)               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| $R_{\mu_a}^2 = (\mu_a^{	ext{upper}} - \mu_a^{	ext{lower}}) 	imes 5\%, \ \ R_{\mu_s}^2 = (\mu_s^{	ext{upper}} - \mu_s^{	ext{lower}}) 	imes 5\%,$                                                                                                                                                                                                                                                         | (3)               |
| $R_{\mu_a} = \max(R_{\mu_a}^1, R_{\mu_a}^2), \ \ R_{\mu_s} = \max(R_{\mu_s}^1, R_{\mu_s}^2),$                                                                                                                                                                                                                                                                                                           | (4)               |
| $\mu_{\mathbf{a}}^{\mathrm{new}} = \mathrm{rand}[\min(\mu_{\mathbf{a}}^{x}, \mu_{\mathbf{a}}^{y}) - R_{\mu_{\mathbf{a}}}, \max(\mu_{\mathbf{a}}^{x}, \mu_{\mathbf{a}}^{y}) + R_{\mu_{\mathbf{a}}}],  \mu_{\mathbf{s}}^{\mathrm{new}} = \mathrm{rand}[\min(\mu_{\mathbf{s}}^{x}, \mu_{\mathbf{s}}^{y}) - R_{\mu_{\mathbf{s}}}, \max(\mu_{\mathbf{s}}^{x}, \mu_{\mathbf{s}}^{y}) + R_{\mu_{\mathbf{s}}}]$ | ₄ <sub>s</sub> ]. |
|                                                                                                                                                                                                                                                                                                                                                                                                         | (5)               |

该交叉算子用于填补被选择算子淘汰的个体, 交叉操作的次数由 P。决定。R<sup>1</sup><sub>µ</sub>和 R<sup>1</sup><sub>µ</sub>为第一类扩展 半径,使得两等位基因范围之外区域的搜索概率是范 围之内搜索概率的 2 倍,有效避免了算术交叉算子中 常见的收缩效应。R<sup>2</sup><sub>µ</sub>和 R<sup>2</sup><sub>µ</sub>为第二类扩展半径,设为 搜索域范围的 5%,避免了两等位基因非常接近时交 叉算子失效,此时交叉算子异化为均匀变异算子,还 能带来额外的局部搜索能力。两类扩展半径中数值 较大者作为最终的扩展半径。当然,增加了扩展半径 可能使交叉后的基因位于搜索域之外,此时增加边界 判定操作即可。(5)式中的 rand(*a*,*b*)表示从[*a*,*b*]中 均匀取一个随机值。

3.3.3 变异算子

变异算子是交叉算子的重要补充,在概率上保

证了遗传算法不会遗漏搜索域的每一个位置。采用 了最常用的均匀变异算子,操作时遍历所有个体的 所有基因,以变异概率 P<sub>m</sub>进行判定,若判定成功则 在对应搜索域的整个取值范围内均匀随机取值代替 原基因。这里 P<sub>m</sub> 取值为 0.01。

$$\mu_{a}^{\text{new}} = \text{rand}(\mu_{a}^{\text{lower}}, \mu_{a}^{\text{upper}}), \ \mu_{s}^{\text{new}} = \text{rand}(\mu_{s}^{\text{lower}}, \mu_{s}^{\text{upper}}).$$
(6)

由于前述选择算子和交叉算子的共同作用,可 能造成每次迭代中当前最佳个体不参与交叉,因此 提出冠军变异算子作为均匀变异算子的补充。每次 迭代中使用最佳个体的变异个体取代当前代中的最 差个体,并且变异限制在最佳个体的各基因数值附 近,相当于让最佳个体在解空间内做一个轻微变动。 冠军变异算子有利于最优解的局部搜索,另一方面也 促进了优秀基因在种群中的传播。设置冠军变异每 次迭代只进行一次,也即冠军变异概率 P'\_ 为 1/50。

$$\mu_{a}^{\text{worst}} = \operatorname{rand}(\mu_{a}^{\text{best}} - R_{\mu_{a}}^{2}, \mu_{a}^{\text{best}} + R_{\mu_{a}}^{2}),$$
  
$$\mu_{s}^{\text{worst}} = \operatorname{rand}(\mu_{s}^{\text{best}} - R_{\mu}^{2}, \mu_{s}^{\text{best}} + R_{\mu}^{2}).$$
(7)

#### 3.4 控制参数和约束条件设置

遗传算法的控制参数主要包括: 迭代次数  $N_i$ 、 种群规模  $N_p$ 、淘汰概率  $P_e$ 、变异概率  $P_m$ 、冠军变异 概率  $P'_m$ 。将迭代次数  $N_i$  设为 50,其余参数均已在前 面给出。光学参数  $\mu_a$  和  $\mu_s$  的取值范围[ $\mu_a^{lower}$ , $\mu_a^{upper}$ ] 和[ $\mu_s^{lower}$ , $\mu_s^{upper}$ ]即为遗传算法中两个基因的约束条 件。

#### 3.5 多样性评价

遗传算法的性能可用迭代速度和种群多样性来 衡量,通常研究中只关注迭代速度。然而种群的多 样性保证了遗传算法的全局收敛性也即光学参数提 取结果的准确性,多样性远比收敛速度更重要,前述 各种遗传操作的选择中特别保持种群的多样性,不 使用选择压力过大的算子。多样性度量尚未有公认 的定义,在此以每代种群中所有个体适应值的变异 系数及迭代末各基因的分布情况进行表征。综上所 述,遗传算法迭代求解的过程如图 4 所示。



图 4 遗传算法迭代求解过程 Fig. 4 Iteration process of genetic algorithm

### 4 光学参数提取

#### 4.1 光学参数提取实例

假设某一混浊介质的光学参数为: $\mu_a = 5 \text{ cm}^{-1}$ ,  $\mu_s = 12 \text{ cm}^{-1}$ ,g = 0.94,n = 1.37,输入正模型得到空 间分辨漫反射光分布。然后使用设计的算法对光学 参数进行提取,设光学参数的取值范围为:  $2.5 \text{ cm}^{-1} \leq \mu_a \leq 7.5 \text{ cm}^{-1}$ , $6 \text{ cm}^{-1} \leq \mu_s \leq 18 \text{ cm}^{-1}$ 。记 录迭代过程中每一代的最佳适应值、平均适应值、适 应值标准偏差等信息,并记录迭代结束时种群中所 有个体的适应值和各基因数值。

图 5 为迭代过程中种群的最佳适应值、最差适 应值、平均适应值、适应值标准偏差、适应值变异系 数的变动情况。由图 5(a)中最佳适应值变动情况 可见,随着迭代进行,最佳适应值单调下降趋近于 0,表明算法具有较好的收敛性。到第 50 次迭代时 适应值为 0.000332,表示算法提取的光学参数代表 的 S<sub>p</sub> 曲线和光学参数目标值代表的 S<sub>t</sub> 曲线已基本 重合。由图 5(b)中平均适应值和适应值标准偏差 变动情况可见随着迭代的进行种群中所有个体逐渐 趋近最优解;由最差适应值变动情况可见由于变异 算子的作用使得每代中均有少量个体在远离当前均 值的地方进行尝试,符合各算子的设计。图 5(c)为 迭代过程中每代的变异系数变动情况,可见算法始 终保持了较好的多样性。图 6 为迭代过程中最佳个体的  $\mu_a$  和  $\mu_s$  变动情况,可见  $\mu_a$  振荡收敛于目标值 5 cm<sup>-1</sup>附近, $\mu_s$  振荡收敛于目标值 12 cm<sup>-1</sup>附近。





Fig. 5 Changes in the indicators in iterations. (a) Minimum fitness; (b) minimum fitness, maximum fitness, mean fitness and standard deviation of fitness; (c) variable coefficient of fitness



图 6 最佳个体的 µa 和 µs 在迭代过程中的变化

Fig. 6 μ<sub>a</sub> and μ<sub>a</sub> of the best individual in iteration process 图 7(a)为迭代结束时种群中所有个体的适应 值,多数个体都已逼近最优解,少数离群个体是变异 算子作用的结果。图 7(b)为迭代结束时所有个体 的 μ<sub>a</sub> 和 μ<sub>s</sub> 分布情况,没有出现参数聚集现象,表明 算法在逼近最优解的同时仍然保持了较好的种群多 样性,符合设计目标。

### 4.2 大范围内的光学参数提取

生物组织光学参数取值范围较广,多数分布在  $0 \ll \mu_a \ll 100 \text{ cm}^{-1} 和 0 \ll \mu_s \ll 1000 \text{ cm}^{-1} 范围内<sup>[22]</sup>,$ 在该范围内均匀取点观察光学参数提取效果。表 1为大范围内光学参数提取示例,每个单元中的第一 $行两个数值即为对应目标值的<math>\mu_a$  和 $\mu_s$  的提取值, 第二行表示提取值各自的相对误差。图 8 为大范围 时 $\mu_a$  和 $\mu_s$  提取的相对误差绝对值,图中圆形的半 径和方块的边长表示误差绝对值大小。在 $\mu_s > 50$ cm<sup>-1</sup>时 $\mu_a$  提取的相对误差小于 1%, $\mu_s$  提取的相对 误差小于 4%;在 $\mu_s < 50 \text{ cm}^{-1}$ 时两个光学参数提取的 相对误差较高,最大误差分别为 3.38%和12.05%。 $\mu_a$ 和 $\mu_s$  提取的平均相对误差分别为 0.25%和 0.58%,均 方根误差(RMSE)分别为 0.32 cm<sup>-1</sup>和1.68 cm<sup>-1</sup>。可 见,光学参数的提取效果好于目前最优秀的基于神经 网络的光学参数提取算法<sup>[12]</sup>。



图 7 迭代结束时的信息。(a)各个体的适应值;(b)各个体的 µa 和 µs

Fig. 7 Information of final iteration. (a) Fitness of each individual; (b)  $\mu_a$  and  $\mu_s$  of each individual

#### 表1 大范围内光学参数提取示例

Table 1 Examples of determination of optical parameters in large scale

| $ / cm^{-1}$                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mu_{ m a}/{ m cm}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mu_{\rm s}/{\rm cm}$                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35                                                                                                                                                                                                                                                                                                                                      | 45                                                                                                                                                                                                                                                                                                                                            |
| 50                                                                                                                             | 5.10, 50.56                                                                                                                                                                                                                                                                                                                                       | 15.09, 50.48                                                                                                                                                                                                                                                                                                                                                                                                       | 24.87,49.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.19, 50.20                                                                                                                                                                                                                                                                                                                            | 44.80,49.90                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                | 2.04%, 1.11%                                                                                                                                                                                                                                                                                                                                      | 0.58%, 0.95%                                                                                                                                                                                                                                                                                                                                                                                                       | -0.53%, -1.54%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.54%, 0.40%                                                                                                                                                                                                                                                                                                                            | -0.45%, $-0.21%$                                                                                                                                                                                                                                                                                                                              |
| 150                                                                                                                            | 4.95,149.06                                                                                                                                                                                                                                                                                                                                       | 14.96, 149.23                                                                                                                                                                                                                                                                                                                                                                                                      | 25.09, 150.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.89, 149.84                                                                                                                                                                                                                                                                                                                           | 45.08, 149.60                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                | -0.92%, $-0.63%$                                                                                                                                                                                                                                                                                                                                  | -0.26%, $-0.51%$                                                                                                                                                                                                                                                                                                                                                                                                   | 0.36%, 0.53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.33%, $-0.11%$                                                                                                                                                                                                                                                                                                                        | 0.18%, $-0.27%$                                                                                                                                                                                                                                                                                                                               |
| 250                                                                                                                            | 4.99,249.54                                                                                                                                                                                                                                                                                                                                       | 15.02, 250.39                                                                                                                                                                                                                                                                                                                                                                                                      | 25.02, 250.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.04, 249.88                                                                                                                                                                                                                                                                                                                           | 44.87,248.92                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                | -0.29%, $-0.19%$                                                                                                                                                                                                                                                                                                                                  | 0.12%, 0.16%                                                                                                                                                                                                                                                                                                                                                                                                       | 0.07%, 0.14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10%, $-0.05%$                                                                                                                                                                                                                                                                                                                         | -0.29%, $-0.43%$                                                                                                                                                                                                                                                                                                                              |
| 350                                                                                                                            | 5.01, 350.77                                                                                                                                                                                                                                                                                                                                      | 15.01, 350.68                                                                                                                                                                                                                                                                                                                                                                                                      | 25.02, 350.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.98, 349.38                                                                                                                                                                                                                                                                                                                           | 45.03, 350.07                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                | 0.14%, 0.22%                                                                                                                                                                                                                                                                                                                                      | 0.05%, 0.19%                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10%, 0.11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.06%, $-0.18%$                                                                                                                                                                                                                                                                                                                        | 0.06%, 0.02%                                                                                                                                                                                                                                                                                                                                  |
| 450                                                                                                                            | 5.01, 450.69                                                                                                                                                                                                                                                                                                                                      | 14.97, 449.11                                                                                                                                                                                                                                                                                                                                                                                                      | 25.03, 451.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.03, 451.00                                                                                                                                                                                                                                                                                                                           | 45.02, 449.35                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                | 0.20%, 0.15%                                                                                                                                                                                                                                                                                                                                      | -0.23%, $-0.20%$                                                                                                                                                                                                                                                                                                                                                                                                   | 0.10%, 0.28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10%, 0.22%                                                                                                                                                                                                                                                                                                                            | 0.05%, $-0.14%$                                                                                                                                                                                                                                                                                                                               |
| 550                                                                                                                            | 5.00, 548.70                                                                                                                                                                                                                                                                                                                                      | 14.99, 549.44                                                                                                                                                                                                                                                                                                                                                                                                      | 24.99, 549.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.03, 551.70                                                                                                                                                                                                                                                                                                                           | 45.03, 550.53                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                | 0.03%, $-0.24%$                                                                                                                                                                                                                                                                                                                                   | -0.07%, $-0.10%$                                                                                                                                                                                                                                                                                                                                                                                                   | -0.03%, $-0.07%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.09%, 0.31%                                                                                                                                                                                                                                                                                                                            | 0.07%, 0.10%                                                                                                                                                                                                                                                                                                                                  |
| 650                                                                                                                            | 5.01,650.55                                                                                                                                                                                                                                                                                                                                       | 15.01,650.00                                                                                                                                                                                                                                                                                                                                                                                                       | 25.00, 648.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.06, 650.86                                                                                                                                                                                                                                                                                                                           | 44.95,648.83                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                | 0.25%, 0.08%                                                                                                                                                                                                                                                                                                                                      | 0.06%, 0.00%                                                                                                                                                                                                                                                                                                                                                                                                       | -0.01%, $-0.19%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.17%, 0.13%                                                                                                                                                                                                                                                                                                                            | -0.10%, $-0.18%$                                                                                                                                                                                                                                                                                                                              |
| 750                                                                                                                            | 5.00,750.73                                                                                                                                                                                                                                                                                                                                       | 15.00, 749.69                                                                                                                                                                                                                                                                                                                                                                                                      | 25.00, 748.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.97,750.27                                                                                                                                                                                                                                                                                                                            | 44.98, 751.23                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                | -0.03%, $0.10%$                                                                                                                                                                                                                                                                                                                                   | 0.01%, $-0.04%$                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00%, $-0.14%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.08%, $0.04%$                                                                                                                                                                                                                                                                                                                         | -0.05%, 0.16%                                                                                                                                                                                                                                                                                                                                 |
| 850                                                                                                                            | 5.00,850.80                                                                                                                                                                                                                                                                                                                                       | 15.00, 850.44                                                                                                                                                                                                                                                                                                                                                                                                      | 25.00, 849.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.03, 850.30                                                                                                                                                                                                                                                                                                                           | 45.00, 848.10                                                                                                                                                                                                                                                                                                                                 |
| 830                                                                                                                            | 0.04%, 0.09%                                                                                                                                                                                                                                                                                                                                      | -0.01%, 0.05%                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00%, $-0.04%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08%, 0.04%                                                                                                                                                                                                                                                                                                                            | -0.01%, $-0.22%$                                                                                                                                                                                                                                                                                                                              |
| 950                                                                                                                            | 4.99, 950.55                                                                                                                                                                                                                                                                                                                                      | 15.02, 951.44                                                                                                                                                                                                                                                                                                                                                                                                      | 24.95, 952.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.98,953.65                                                                                                                                                                                                                                                                                                                            | 44.99, 951.41                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                | -0.10%, $0.06%$                                                                                                                                                                                                                                                                                                                                   | 0.17%, 0.15%                                                                                                                                                                                                                                                                                                                                                                                                       | -0.20%, 0.31%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.07%, $0.38%$                                                                                                                                                                                                                                                                                                                         | -0.03%, $0.15%$                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                               |
| $u/cm^{-1}$                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mu_{ m a}/ m cm^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                               |
| $\mu_{ m s}/{ m cm}^{-1}$                                                                                                      | 55                                                                                                                                                                                                                                                                                                                                                | 65                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\mu_{\rm a}/{\rm cm}^{-1}}{75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85                                                                                                                                                                                                                                                                                                                                      | 95                                                                                                                                                                                                                                                                                                                                            |
| $\mu_{\rm s}/{\rm cm}^{-1}$                                                                                                    | 55<br>53.14,46.09                                                                                                                                                                                                                                                                                                                                 | 65<br>64.33,49.54                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\mu_{a}/cm^{-1}}{75}$ 75. 54, 51. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85<br>86.52,56.03                                                                                                                                                                                                                                                                                                                       | 95<br>94.43,49.31                                                                                                                                                                                                                                                                                                                             |
| $\frac{\mu_{\rm s}/{\rm cm}^{-1}}{50}$                                                                                         | 55<br>53.14,46.09<br>-3.38%,-7.82%                                                                                                                                                                                                                                                                                                                | 65<br>64.33,49.54<br>-1.03%,-0.91%                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\mu_{a}/cm^{-1}}{75}$ 75.54,51.15 0.71%,2.30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85<br>86.52,56.03<br>1.78%,12.05%                                                                                                                                                                                                                                                                                                       | 95<br>94.43,49.31<br>-0.60%,-1.39%                                                                                                                                                                                                                                                                                                            |
| $\frac{\mu_{\rm s}/\rm{cm}^{-1}}{50}$                                                                                          | 55<br>53.14,46.09<br>-3.38%,-7.82%<br>54.69,147.44                                                                                                                                                                                                                                                                                                | 65<br>64.33,49.54<br>-1.03%,-0.91%<br>65.05,150.35                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\mu_{a}/cm^{-1}}{75}$ 75.54,51.15<br>0.71%,2.30%<br>74.12,145.03                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85<br>86.52,56.03<br>1.78%,12.05%<br>86.12,154.60                                                                                                                                                                                                                                                                                       | 95<br>94.43,49.31<br>-0.60%,-1.39%<br>95.86,154.76                                                                                                                                                                                                                                                                                            |
| $\frac{\mu_{\rm s}/\rm{cm}^{-1}}{50}$                                                                                          | 55<br>53.14,46.09<br>-3.38%,-7.82%<br>54.69,147.44<br>-0.56%,-1.70%                                                                                                                                                                                                                                                                               | 65<br>64.33,49.54<br>-1.03%,-0.91%<br>65.05,150.35<br>0.08%,0.23%                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} \mu_{a}/\mathrm{cm}^{-1} \\ \hline 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ \hline 74.12, 145.03 \\ -1.17\%, -3.31\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                  | 85<br>86.52,56.03<br>1.78%,12.05%<br>86.12,154.60<br>1.31%,3.07%                                                                                                                                                                                                                                                                        | 95<br>94.43,49.31<br>-0.60%,-1.39%<br>95.86,154.76<br>0.91%,3.17%                                                                                                                                                                                                                                                                             |
| $\frac{\mu_{\rm s}/\rm{cm}^{-1}}{50}$                                                                                          | 55<br>53.14,46.09<br>-3.38%,-7.82%<br>54.69,147.44<br>-0.56%,-1.70%<br>55.04,250.15                                                                                                                                                                                                                                                               | 65<br>64.33,49.54<br>-1.03%,-0.91%<br>65.05,150.35<br>0.08%,0.23%<br>65.00,249.34                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} \mu_{\rm a}/\rm{cm}^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \end{array}$                                                                                                                                                                                                                                                                                                                                                                               | 85<br>86.52,56.03<br>1.78%,12.05%<br>86.12,154.60<br>1.31%,3.07%<br>84.84,248.04                                                                                                                                                                                                                                                        | 95<br>94. 43, 49. 31<br>-0. 60%, -1. 39%<br>95. 86, 154. 76<br>0. 91%, 3. 17%<br>94. 83, 246. 94                                                                                                                                                                                                                                              |
| $ \frac{\mu_{\rm s}/{\rm cm}^{-1}}{50} $ 150 250                                                                               | 55 53. 14, 46. 09 -3. 38%, -7. 82% 54. 69, 147. 44 -0. 56%, -1. 70% 55. 04, 250. 15 0. 07%, 0. 06%                                                                                                                                                                                                                                                | $\begin{array}{r} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\% \end{array}$                                                                                                                                                                                                                                                                                   | $\begin{array}{r} \mu_{\rm a}/\rm{cm}^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \end{array}$                                                                                                                                                                                                                                                                                                                                                           | 85<br>86.52,56.03<br>1.78%,12.05%<br>86.12,154.60<br>1.31%,3.07%<br>84.84,248.04<br>-0.19%,-0.78%                                                                                                                                                                                                                                       | 95<br>94. 43, 49. 31<br>-0. 60%, -1. 39%<br>95. 86, 154. 76<br>0. 91%, 3. 17%<br>94. 83, 246. 94<br>-0. 18%, -1. 22%                                                                                                                                                                                                                          |
| $ \frac{\mu_{\rm s}/{\rm cm}^{-1}}{50} $<br>250<br>350                                                                         | $\begin{array}{r} 55\\ 53.14, 46.09\\ -3.38\%, -7.82\%\\ 54.69, 147.44\\ -0.56\%, -1.70\%\\ 55.04, 250.15\\ 0.07\%, 0.06\%\\ 54.92, 347.93\end{array}$                                                                                                                                                                                            | $\begin{array}{r} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\end{array}$                                                                                                                                                                                                                                                                     | $\begin{array}{r} \mu_{\rm a}/\rm cm^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \end{array}$                                                                                                                                                                                                                                                                                                                                           | 85<br>86.52,56.03<br>1.78%,12.05%<br>86.12,154.60<br>1.31%,3.07%<br>84.84,248.04<br>-0.19%,-0.78%<br>85.04,350.54                                                                                                                                                                                                                       | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\end{array}$                                                                                                                                                                                               |
| $ \frac{\mu_{\rm s}/\rm{cm}^{-1}}{50} $ 150 250 350                                                                            | $\begin{array}{r} 55\\ 53.14, 46.09\\ -3.38\%, -7.82\%\\ 54.69, 147.44\\ -0.56\%, -1.70\%\\ 55.04, 250.15\\ 0.07\%, 0.06\%\\ 54.92, 347.93\\ -0.15\%, -0.59\%\end{array}$                                                                                                                                                                         | $\begin{array}{c} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ \end{array}$                                                                                                                                                                                                                                                  | $\begin{array}{r} \mu_{\rm a}/\rm{cm}^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \\ 0.24\%, 0.53\% \end{array}$                                                                                                                                                                                                                                                                                                                        | 85<br>86.52,56.03<br>1.78%,12.05%<br>86.12,154.60<br>1.31%,3.07%<br>84.84,248.04<br>-0.19%,-0.78%<br>85.04,350.54<br>0.04%,0.15%                                                                                                                                                                                                        | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ \end{array}$                                                                                                                                                                           |
| $ \frac{\mu_{s}/cm^{-1}}{50} $ 150 250 350 450                                                                                 | $\begin{array}{r} 55\\ 53.14, 46.09\\ -3.38\%, -7.82\%\\ 54.69, 147.44\\ -0.56\%, -1.70\%\\ 55.04, 250.15\\ 0.07\%, 0.06\%\\ 54.92, 347.93\\ -0.15\%, -0.59\%\\ 55.01, 448.52\end{array}$                                                                                                                                                         | $\begin{array}{r} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\end{array}$                                                                                                                                                                                                                                      | $\begin{array}{r} \mu_{\rm a}/\rm cm^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \\ 0.24\%, 0.53\% \\ 75.06, 451.11 \end{array}$                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 85\\ 86.52, 56.03\\ 1.78\%, 12.05\%\\ 86.12, 154.60\\ 1.31\%, 3.07\%\\ 84.84, 248.04\\ -0.19\%, -0.78\%\\ 85.04, 350.54\\ 0.04\%, 0.15\%\\ 85.05, 451.11\end{array}$                                                                                                                                                  | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\end{array}$                                                                                                                                                               |
| $ \frac{\mu_{\rm s}/\rm{cm}^{-1}}{50} \\ \frac{150}{250} \\ \frac{350}{450} $                                                  | $\begin{array}{r} 55\\ 53.14, 46.09\\ -3.38\%, -7.82\%\\ 54.69, 147.44\\ -0.56\%, -1.70\%\\ 55.04, 250.15\\ 0.07\%, 0.06\%\\ 54.92, 347.93\\ -0.15\%, -0.59\%\\ 55.01, 448.52\\ 0.02\%, -0.33\%\\ \end{array}$                                                                                                                                    | $\begin{array}{r} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\\ -0.02\%,-0.21\%\\ \end{array}$                                                                                                                                                                                                                 | $\begin{array}{r} \mu_{\rm a}/{\rm cm}^{-1} \\ \hline 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ \hline 74.12, 145.03 \\ -1.17\%, -3.31\% \\ \hline 74.88, 249.64 \\ -0.16\%, -0.14\% \\ \hline 75.18, 351.85 \\ 0.24\%, 0.53\% \\ \hline 75.06, 451.11 \\ 0.08\%, 0.25\% \end{array}$                                                                                                                                                                                                                                                 | $\begin{array}{c} 85\\ 86.52, 56.03\\ 1.78\%, 12.05\%\\ 86.12, 154.60\\ 1.31\%, 3.07\%\\ 84.84, 248.04\\ -0.19\%, -0.78\%\\ 85.04, 350.54\\ 0.04\%, 0.15\%\\ 85.05, 451.11\\ 0.06\%, 0.25\%\\ \end{array}$                                                                                                                              | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ \end{array}$                                                                                                                                           |
| $ \frac{\mu_{s}/cm^{-1}}{50} $ 150 250 350 450 550                                                                             | $\begin{array}{r} 55\\ 53.14, 46.09\\ -3.38\%, -7.82\%\\ 54.69, 147.44\\ -0.56\%, -1.70\%\\ 55.04, 250.15\\ 0.07\%, 0.06\%\\ 54.92, 347.93\\ -0.15\%, -0.59\%\\ 55.01, 448.52\\ 0.02\%, -0.33\%\\ 54.96, 549.98\end{array}$                                                                                                                       | $\begin{array}{r} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\\ -0.02\%,-0.21\%\\ 65.03,548.04\end{array}$                                                                                                                                                                                                     | $\begin{array}{r} \mu_{\rm a}/\rm cm^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \\ 0.24\%, 0.53\% \\ 75.06, 451.11 \\ 0.08\%, 0.25\% \\ 74.96, 548.65 \\ \end{array}$                                                                                                                                                                                                                                                                  | $\begin{array}{r} 85\\ 86.52,56.03\\ 1.78\%,12.05\%\\ 86.12,154.60\\ 1.31\%,3.07\%\\ 84.84,248.04\\ -0.19\%,-0.78\%\\ 85.04,350.54\\ 0.04\%,0.15\%\\ 85.05,451.11\\ 0.06\%,0.25\%\\ 85.00,550.79\end{array}$                                                                                                                            | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ 95.14,550.88\end{array}$                                                                                                                               |
| $ \frac{\mu_{s}/cm^{-1}}{50} $ 150 250 350 450 550                                                                             | $\begin{array}{r} 55\\ 53.14, 46.09\\ -3.38\%, -7.82\%\\ 54.69, 147.44\\ -0.56\%, -1.70\%\\ 55.04, 250.15\\ 0.07\%, 0.06\%\\ 54.92, 347.93\\ -0.15\%, -0.59\%\\ 55.01, 448.52\\ 0.02\%, -0.33\%\\ 54.96, 549.98\\ -0.07\%, -0.003\%\\ \end{array}$                                                                                                | $\begin{array}{c} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\\ -0.02\%,-0.21\%\\ 65.03,548.04\\ 0.05\%,-0.36\%\\ \end{array}$                                                                                                                                                                                 | $\begin{array}{r} \mu_{\rm a}/\rm cm^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \\ 0.24\%, 0.53\% \\ 75.06, 451.11 \\ 0.08\%, 0.25\% \\ 74.96, 548.65 \\ -0.05\%, -0.24\% \end{array}$                                                                                                                                                                                                                                                 | $\begin{array}{c} 85\\ 86.52, 56.03\\ 1.78\%, 12.05\%\\ 86.12, 154.60\\ 1.31\%, 3.07\%\\ 84.84, 248.04\\ -0.19\%, -0.78\%\\ 85.04, 350.54\\ 0.04\%, 0.15\%\\ 85.05, 451.11\\ 0.06\%, 0.25\%\\ 85.00, 550.79\\ 0.00\%, 0.14\%\\ \end{array}$                                                                                             | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ 95.14,550.88\\ 0.15\%,0.16\%\\ \end{array}$                                                                                                            |
| $ \frac{\mu_{s}/cm^{-1}}{50} $ $ \frac{150}{250} $ $ \frac{350}{450} $ $ \frac{650}{650} $                                     | $\begin{array}{r} 55\\ 53.14,46.09\\ -3.38\%,-7.82\%\\ 54.69,147.44\\ -0.56\%,-1.70\%\\ 55.04,250.15\\ 0.07\%,0.06\%\\ 54.92,347.93\\ -0.15\%,-0.59\%\\ 55.01,448.52\\ 0.02\%,-0.33\%\\ 54.96,549.98\\ -0.07\%,-0.003\%\\ 55.02,652.54\end{array}$                                                                                                | $\begin{array}{c} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\\ -0.02\%,-0.21\%\\ 65.03,548.04\\ 0.05\%,-0.36\%\\ 65.04,650.37\end{array}$                                                                                                                                                                     | $\begin{array}{r} \mu_{\rm a}/\rm cm^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \\ 0.24\%, 0.53\% \\ 75.06, 451.11 \\ 0.08\%, 0.25\% \\ 74.96, 548.65 \\ -0.05\%, -0.24\% \\ 74.97, 650.99 \\ \end{array}$                                                                                                                                                                                                                             | $\begin{array}{c} 85\\ 86.52, 56.03\\ 1.78\%, 12.05\%\\ 86.12, 154.60\\ 1.31\%, 3.07\%\\ 84.84, 248.04\\ -0.19\%, -0.78\%\\ 85.04, 350.54\\ 0.04\%, 0.15\%\\ 85.05, 451.11\\ 0.06\%, 0.25\%\\ 85.00, 550.79\\ 0.00\%, 0.14\%\\ 85.00, 651.87\end{array}$                                                                                | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ 95.14,550.88\\ 0.15\%,0.16\%\\ 95.15,651.12\end{array}$                                                                                                |
| $\frac{\mu_{\rm s}/\rm{cm}^{-1}}{50}$ $\frac{150}{250}$ $\frac{350}{450}$ $\frac{650}{650}$                                    | $\begin{array}{r} 55\\ 53.14, 46.09\\ -3.38\%, -7.82\%\\ 54.69, 147.44\\ -0.56\%, -1.70\%\\ 55.04, 250.15\\ 0.07\%, 0.06\%\\ 54.92, 347.93\\ -0.15\%, -0.59\%\\ 55.01, 448.52\\ 0.02\%, -0.33\%\\ 54.96, 549.98\\ -0.07\%, -0.003\%\\ 55.02, 652.54\\ 0.03\%, 0.39\%\\ \end{array}$                                                               | $\begin{array}{c} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\\ -0.02\%,-0.21\%\\ 65.03,548.04\\ 0.05\%,-0.36\%\\ 65.04,650.37\\ 0.06\%,0.06\%\\ \end{array}$                                                                                                                                                  | $\begin{array}{r} \mu_{\rm s}/\rm cm^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \\ 0.24\%, 0.53\% \\ 75.06, 451.11 \\ 0.08\%, 0.25\% \\ 74.96, 548.65 \\ -0.05\%, -0.24\% \\ 74.97, 650.99 \\ -0.04\%, 0.15\% \end{array}$                                                                                                                                                                                                             | 85           86. 52, 56. 03 $1.78\%$ , 12. 05%           86. 12, 154. 60 $1.31\%$ , $3.07\%$ 84. 84, 248. 04 $-0.19\%$ , $-0.78\%$ 85. 04, 350. 54 $0.04\%$ , $0.15\%$ 85. 05, 451. 11 $0.06\%$ , $0.25\%$ 85. 00, 550. 79 $0.00\%$ , $0.14\%$ 85. 00, 651. 87 $0.00\%$ , $0.29\%$                                                      | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ 95.14,550.88\\ 0.15\%,0.16\%\\ 95.15,651.12\\ 0.16\%,0.17\%\\ \end{array}$                                                                             |
| $\frac{\mu_{\rm s}/\rm{cm}^{-1}}{50}$ $\frac{150}{250}$ $\frac{350}{450}$ $\frac{450}{550}$ $\frac{650}{750}$                  | $\begin{array}{r} 55\\ 53.14, 46.09\\ -3.38\%, -7.82\%\\ 54.69, 147.44\\ -0.56\%, -1.70\%\\ 55.04, 250.15\\ 0.07\%, 0.06\%\\ 54.92, 347.93\\ -0.15\%, -0.59\%\\ 55.01, 448.52\\ 0.02\%, -0.33\%\\ 54.96, 549.98\\ -0.07\%, -0.003\%\\ 55.02, 652.54\\ 0.03\%, 0.39\%\\ 54.93, 749.87\end{array}$                                                  | $\begin{array}{c} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\\ -0.02\%,-0.21\%\\ 65.03,548.04\\ 0.05\%,-0.36\%\\ 65.04,650.37\\ 0.06\%,0.06\%\\ 65.03,750.53\end{array}$                                                                                                                                      | $\begin{array}{r} \mu_{\rm a}/\rm cm^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \\ 0.24\%, 0.53\% \\ 75.06, 451.11 \\ 0.08\%, 0.25\% \\ 74.96, 548.65 \\ -0.05\%, -0.24\% \\ 74.97, 650.99 \\ -0.04\%, 0.15\% \\ 74.87, 751.09 \\ \end{array}$                                                                                                                                                                                         | $\begin{array}{c} 85\\ 86.52, 56.03\\ 1.78\%, 12.05\%\\ 86.12, 154.60\\ 1.31\%, 3.07\%\\ 84.84, 248.04\\ -0.19\%, -0.78\%\\ 85.04, 350.54\\ 0.04\%, 0.15\%\\ 85.05, 451.11\\ 0.06\%, 0.25\%\\ 85.00, 550.79\\ 0.00\%, 0.14\%\\ 85.00, 651.87\\ 0.00\%, 0.29\%\\ 85.08, 751.93\end{array}$                                               | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ 95.14,550.88\\ 0.15\%,0.16\%\\ 95.15,651.12\\ 0.16\%,0.17\%\\ 94.96,750.41\end{array}$                                                                 |
| $\frac{\mu_{\rm s}/\rm{cm}^{-1}}{50}$ $\frac{50}{250}$ $\frac{350}{450}$ $\frac{450}{550}$ $\frac{650}{750}$                   | $\begin{array}{r} 55\\ 53.14,46.09\\ -3.38\%,-7.82\%\\ 54.69,147.44\\ -0.56\%,-1.70\%\\ 55.04,250.15\\ 0.07\%,0.06\%\\ 54.92,347.93\\ -0.15\%,-0.59\%\\ 55.01,448.52\\ 0.02\%,-0.33\%\\ 54.96,549.98\\ -0.07\%,-0.003\%\\ 55.02,652.54\\ 0.03\%,0.39\%\\ 54.93,749.87\\ -0.12\%,-0.02\%\end{array}$                                               | $\begin{array}{c} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\\ -0.02\%,-0.21\%\\ 65.03,548.04\\ 0.05\%,-0.36\%\\ 65.04,650.37\\ 0.06\%,0.06\%\\ 65.03,750.53\\ 0.05\%,0.07\%\\ \end{array}$                                                                                                                   | $\begin{array}{r} \mu_{\rm a}/\rm cm^{-1} \\ \hline 75 \\ \hline 75.54, 51.15 \\ 0.71\%, 2.30\% \\ \hline 74.12, 145.03 \\ \hline -1.17\%, -3.31\% \\ \hline 74.88, 249.64 \\ \hline -0.16\%, -0.14\% \\ \hline 75.18, 351.85 \\ 0.24\%, 0.53\% \\ \hline 75.06, 451.11 \\ 0.08\%, 0.25\% \\ \hline 74.96, 548.65 \\ \hline -0.05\%, -0.24\% \\ \hline 74.97, 650.99 \\ \hline -0.04\%, 0.15\% \\ \hline 74.87, 751.09 \\ \hline -0.17\%, 0.14\% \\ \end{array}$                                                                    | $\begin{array}{c} 85\\ 86.52, 56.03\\ 1.78\%, 12.05\%\\ 86.12, 154.60\\ 1.31\%, 3.07\%\\ 84.84, 248.04\\ -0.19\%, -0.78\%\\ 85.04, 350.54\\ 0.04\%, 0.15\%\\ 85.05, 451.11\\ 0.06\%, 0.25\%\\ 85.00, 550.79\\ 0.00\%, 0.14\%\\ 85.00, 651.87\\ 0.00\%, 0.29\%\\ 85.08, 751.93\\ 0.10\%, 0.26\%\\ \end{array}$                           | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ 95.14,550.88\\ 0.15\%,0.16\%\\ 95.15,651.12\\ 0.16\%,0.17\%\\ 94.96,750.41\\ -0.04\%,0.05\%\\ \end{array}$                                             |
| $\frac{\mu_{\rm s}/{\rm cm}^{-1}}{50}$ $\frac{50}{250}$ $\frac{350}{450}$ $\frac{450}{550}$ $\frac{650}{750}$ $\frac{850}{50}$ | $\begin{array}{r} 55\\ 53.14,46.09\\ -3.38\%,-7.82\%\\ 54.69,147.44\\ -0.56\%,-1.70\%\\ 55.04,250.15\\ 0.07\%,0.06\%\\ 54.92,347.93\\ -0.15\%,-0.59\%\\ 55.01,448.52\\ 0.02\%,-0.33\%\\ 54.96,549.98\\ -0.07\%,-0.003\%\\ 55.02,652.54\\ 0.03\%,0.39\%\\ 54.93,749.87\\ -0.12\%,-0.02\%\\ 55.03,851.71\\ \end{array}$                             | $\begin{array}{r} 65\\ 64.\ 33,\ 49.\ 54\\ -1.\ 03\%,\ -0.\ 91\%\\ 65.\ 05,\ 150.\ 35\\ 0.\ 08\%,\ 0.\ 23\%\\ 65.\ 00,\ 249.\ 34\\ 0.\ 00\%,\ -0.\ 26\%\\ 65.\ 08,\ 350.\ 55\\ 0.\ 12\%,\ 0.\ 16\%\\ 64.\ 99,\ 449.\ 07\\ -0.\ 02\%,\ -0.\ 21\%\\ 65.\ 03,\ 548.\ 04\\ 0.\ 05\%,\ -0.\ 36\%\\ 65.\ 04,\ 650.\ 37\\ 0.\ 06\%,\ 0.\ 06\%\\ 65.\ 03,\ 750.\ 53\\ 0.\ 05\%,\ 0.\ 07\%\\ 65.\ 03,\ 848.\ 95\end{array}$ | $\begin{array}{r} \mu_{\rm s}/\rm cm^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \\ 0.24\%, 0.53\% \\ 75.06, 451.11 \\ 0.08\%, 0.25\% \\ 74.96, 548.65 \\ -0.05\%, -0.24\% \\ 74.97, 650.99 \\ -0.04\%, 0.15\% \\ 74.87, 751.09 \\ -0.17\%, 0.14\% \\ 75.02, 850.52 \\ \end{array}$                                                                                                                                                     | 85 $86.52, 56.03$ $1.78\%, 12.05\%$ $86.12, 154.60$ $1.31\%, 3.07\%$ $84.84, 248.04$ $-0.19\%, -0.78\%$ $85.04, 350.54$ $0.04\%, 0.15\%$ $85.05, 451.11$ $0.06\%, 0.25\%$ $85.00, 550.79$ $0.00\%, 0.14\%$ $85.00, 651.87$ $0.00\%, 0.29\%$ $85.08, 751.93$ $0.10\%, 0.26\%$ $84.95, 851.77$                                            | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ 95.14,550.88\\ 0.15\%,0.16\%\\ 95.15,651.12\\ 0.16\%,0.17\%\\ 94.96,750.41\\ -0.04\%,0.05\%\\ 94.96,851.39\end{array}$                                 |
| $\frac{\mu_{\rm s}/\rm{cm}^{-1}}{50}$ $\frac{150}{250}$ $\frac{250}{350}$ $\frac{450}{550}$ $\frac{650}{750}$ $850$            | $\begin{array}{r} 55\\ 53.14,46.09\\ -3.38\%,-7.82\%\\ 54.69,147.44\\ -0.56\%,-1.70\%\\ 55.04,250.15\\ 0.07\%,0.06\%\\ 54.92,347.93\\ -0.15\%,-0.59\%\\ 55.01,448.52\\ 0.02\%,-0.33\%\\ 54.96,549.98\\ -0.07\%,-0.003\%\\ 55.02,652.54\\ 0.03\%,0.39\%\\ 54.93,749.87\\ -0.12\%,-0.02\%\\ 55.03,851.71\\ 0.05\%,0.20\%\\ \end{array}$             | $\begin{array}{c} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\\ -0.02\%,-0.21\%\\ 65.03,548.04\\ 0.05\%,-0.36\%\\ 65.04,650.37\\ 0.06\%,0.06\%\\ 65.03,750.53\\ 0.05\%,0.07\%\\ 65.03,848.95\\ 0.05\%,-0.12\%\end{array}$                                                                                      | $\begin{array}{r} \mu_{\rm a}/\rm cm^{-1} \\ 75 \\ 75.54, 51.15 \\ 0.71\%, 2.30\% \\ 74.12, 145.03 \\ -1.17\%, -3.31\% \\ 74.88, 249.64 \\ -0.16\%, -0.14\% \\ 75.18, 351.85 \\ 0.24\%, 0.53\% \\ 75.06, 451.11 \\ 0.08\%, 0.25\% \\ 74.96, 548.65 \\ -0.05\%, -0.24\% \\ 74.97, 650.99 \\ -0.04\%, 0.15\% \\ 74.87, 751.09 \\ -0.17\%, 0.14\% \\ 75.02, 850.52 \\ 0.02\%, 0.06\% \\ \end{array}$                                                                                                                                   | 85 $86.52, 56.03$ $1.78\%, 12.05\%$ $86.12, 154.60$ $1.31\%, 3.07\%$ $84.84, 248.04$ $-0.19\%, -0.78\%$ $85.04, 350.54$ $0.04\%, 0.15\%$ $85.05, 451.11$ $0.06\%, 0.25\%$ $85.00, 550.79$ $0.00\%, 0.14\%$ $85.08, 751.93$ $0.10\%, 0.26\%$ $84.95, 851.77$ $-0.06\%, 0.21\%$                                                           | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ 95.14,550.88\\ 0.15\%,0.16\%\\ 95.15,651.12\\ 0.16\%,0.17\%\\ 94.96,750.41\\ -0.04\%,0.05\%\\ 94.96,851.39\\ -0.04\%,0.16\%\\ \end{array}$             |
| $\frac{\mu_{\rm s}/\rm{cm}^{-1}}{50}$ $\frac{50}{250}$ $\frac{250}{350}$ $\frac{450}{550}$ $\frac{650}{750}$ $\frac{850}{950}$ | $\begin{array}{r} 55\\ 53.14,46.09\\ -3.38\%,-7.82\%\\ 54.69,147.44\\ -0.56\%,-1.70\%\\ 55.04,250.15\\ 0.07\%,0.06\%\\ 54.92,347.93\\ -0.15\%,-0.59\%\\ 55.01,448.52\\ 0.02\%,-0.33\%\\ 54.96,549.98\\ -0.07\%,-0.003\%\\ 55.02,652.54\\ 0.03\%,0.39\%\\ 54.93,749.87\\ -0.12\%,-0.02\%\\ 55.03,851.71\\ 0.05\%,0.20\%\\ 54.99,949.98\end{array}$ | $\begin{array}{c} 65\\ 64.33,49.54\\ -1.03\%,-0.91\%\\ 65.05,150.35\\ 0.08\%,0.23\%\\ 65.00,249.34\\ 0.00\%,-0.26\%\\ 65.08,350.55\\ 0.12\%,0.16\%\\ 64.99,449.07\\ -0.02\%,-0.21\%\\ 65.03,548.04\\ 0.05\%,-0.36\%\\ 65.04,650.37\\ 0.06\%,0.06\%\\ 65.03,750.53\\ 0.05\%,0.07\%\\ 65.03,848.95\\ 0.05\%,-0.12\%\\ 65.07,946.81\\ \end{array}$                                                                    | $\begin{array}{r} \mu_{\rm a}/\rm{cm}^{-1} \\ \hline 75 \\ \hline 75.54, 51.15 \\ 0.71\%, 2.30\% \\ \hline 74.12, 145.03 \\ \hline -1.17\%, -3.31\% \\ \hline 74.88, 249.64 \\ \hline -0.16\%, -0.14\% \\ \hline 75.18, 351.85 \\ 0.24\%, 0.53\% \\ \hline 75.06, 451.11 \\ 0.08\%, 0.25\% \\ \hline 74.96, 548.65 \\ \hline -0.05\%, -0.24\% \\ \hline 74.97, 650.99 \\ \hline -0.04\%, 0.15\% \\ \hline 74.87, 751.09 \\ \hline -0.17\%, 0.14\% \\ \hline 75.02, 850.52 \\ 0.02\%, 0.06\% \\ \hline 74.90, 949.01 \\ \end{array}$ | 85           86. 52, 56. 03 $1.78\%$ , 12. 05%           86. 12, 154. 60 $1.31\%$ , $3.07\%$ 84. 84, 248. 04 $-0.19\%$ , $-0.78\%$ 85. 04, 350. 54 $0.04\%$ , $0.15\%$ 85. 05, 451. 11 $0.06\%$ , $0.25\%$ 85. 00, 550. 79 $0.00\%$ , $0.14\%$ 85. 08, 751. 93 $0.10\%$ , $0.26\%$ 84. 95, 851. 77 $-0.06\%$ , $0.21\%$ 84. 98, 949. 15 | $\begin{array}{r} 95\\ 94.43,49.31\\ -0.60\%,-1.39\%\\ 95.86,154.76\\ 0.91\%,3.17\%\\ 94.83,246.94\\ -0.18\%,-1.22\%\\ 95.03,349.15\\ 0.03\%,-0.24\%\\ 94.89,450.25\\ -0.12\%,0.06\%\\ 95.14,550.88\\ 0.15\%,0.16\%\\ 95.15,651.12\\ 0.16\%,0.17\%\\ 94.96,750.41\\ -0.04\%,0.05\%\\ 94.96,851.39\\ -0.04\%,0.16\%\\ 95.10,955.03\end{array}$ |

Each cell in this table: determined  $\mu_a$ , determined  $\mu_s$ , relative error of determined  $\mu_a$ , relative error of determined  $\mu_s$ 





### 5 讨 论

由实验结果可见,实数遗传算法应用于混浊介 质光学参数提取可以达到较高的精度,原因有以下 几点:

该方法基于是蒙特卡罗模拟和逆蒙特卡罗方法,忠实于物理过程,精度较高,优于神经网络方法的黑箱式模型、多项式回归的近似逼近、查找表法的插值运算等。此外,(1)式逼近于0时表明正确提取出了目标光学参数,这是典型的最小值优化问题。在各种优化算法中遗传算法求解过程无需使用待求解问题的详细解析式,只需给出用于评价结果好坏的适应值函数即可,特别适合该研究中光学参数和对应的 SRR 曲线间不存在直接函数关系的情况。

对 SSR 径向所有点进行全采样,而其他方法如 神经网络法由于输入节点规模限制只能对 SSR 少 数点采样。全采样方式获取的数据量远大于点采 样,并可使用多种方法滤波降噪;点采样由于数据较 少且间距较远,无法对噪声进行有效处理。可见全 采样方式提取光学参数的精度应当高于点采样方 式。在实际应用中全采样至少有 3 种实现形式:1) 小芯径、高密度光纤束构成的光纤探头;2)光源-探 测器距离连续可调的测量装置;3)CCD 相机。

一般认为,蒙特卡罗模拟中使用的光子数越多 则模拟越精确,也即光子数决定了正模型生成 SRR 曲线的精度,进而决定了逆模型提取光学参数的精 度。由于采用 10<sup>7</sup> 光子数有效降低了随机模型的统 计误差,并使用 GPU 加速技术极大地减少了运行 时间,这才使得遗传算法用于光学参数提取成为可 能。可以注意到,目前加速仅存在于蒙特卡罗模拟 层面,考虑到遗传算法的隐含并行性,将来可在遗传 算法迭代过程中进一步应用消息传递接口(MPI)技 术,有望获得和计算节点数目成正比的加速性能,这 是本方法下一步的改进方向。

### 6 结 论

提出了一种从混浊介质的空间分辨漫反射光分 布中提取光学参数的实数遗传算法。针对性地设计 了适应值函数和各种遗传操作,能够确保迭代的收 敛性和种群的多样性。采用图形处理单元加速的蒙 特卡罗模拟,极大地减少了遗传算法的运行时间。 在生物组织常见光学参数范围内进行的实验表明, 该算法能够以较高的精度提取出光学参数,效果好 于传统的神经网络方法。

附注:读者可向作者(sume. cn@gmail. com)索 取本算法源代码。

#### 参考文献

- Xu Kexin, Gao Feng, Zhao Huijuan. Biomedical Photonics [M]. Beijing: Science Press, 2007. 11-22.
   徐可欣,高峰,赵会娟. 生物医学光子学[M]. 北京:科学出版社, 2007. 11-22.
- 2 C Zhu, Quan Liu. Review of Monte Carlo modeling of light transport in tissues [J]. J Biomed Opt, 2013, 18(5): 050902.
- 3 M Larsson, H Nilsson, T Strömberg. *In vivo* determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry [J]. Appl Opt, 2003, 42(1): 124-134.
- 4 Q Z Wang, K Shastri, T J Pfefer. Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue [J]. Appl Opt, 2010, 49 (28); 5309-5320.
- 5 Q Z Wang, A Agrawal, N S Wang, *et al.*. Condensed Monte Carlo modeling of reflectance from biological tissue with a single illumination-detection fiber [J]. IEEE J Sel Top Quantum Electron, 2010, 16(3): 627-634.
- 6 L S Zhang, Z Z Wang, M Y Zhou. Determination of the optical coefficients of biological tissue by neural network [J]. J Modern Opt, 2010, 57(13): 1163-1170.
- 7 M H Niemz. Laser-Tissue Interactions Fundamentals and Applications [M]. Zhang Zhenxi Transl.. Beijing. Science

Press, 2005. 24-32.

M H 尼姆兹. 激光与生物组织的相互作用原理及应用[M]. 张 镇西译. 北京:科学出版社, 2005. 24-32.

8 Li Chenxi, Zhao Huijuan, Zheng Jiaxiang, *et al.*. Design and property of depth-selective fiber-optical probes applied in diffuse reflection measurement [J]. Acta Optica Sinica, 2012, 32(7): 0717001.

李晨曦,赵会娟,郑家祥,等.深度分辨漫反射测量光纤探头设 计及特性[J].光学学报,2012,32(7):0717001.

- 9 Jiang Yifan, Chen Changshui, Liu Rongting, et al.. Monte Carlo simulation of light propagation along the pericardium meridian line at the wrist [J]. Acta Optica Sinica, 2012, 32(10): 1017001. 江怡帆,陈长水,刘荣廷,等. 腕部手厥阴心包经区域光传输特 性的蒙特卡罗模拟[J]. 光学学报, 2012, 32(10): 1017001.
- 10 T J Pfefer, L S Matchette, C L Bennett, et al.. Reflectancebased determination of optical properties in highly attenuating tissue [J]. J Biomed Opt, 2003, 8(2): 206-215.
- 11 Q Z Wang, D Le, J Ramella-Roman, *et al.*. Broadband ultraviolet-visible optical property measurement in layered turbid media [J]. Biomed Opt Express, 2012, 3(6): 1226-1240.
- 12 M Jäger, F Foschum, A Kienle. Application of multiple artificial neural networks for the determination of the optical properties of turbid media [J]. J Biomed Opt, 2013, 18(5); 057005.
- 13 G M Palmer, N Ramanujam. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms [J]. Appl Opt, 2006, 45(5): 1062-1071.
- 14 T A Erickson, A Mazhar, D Cuccia, *et al.*. Lookup-table method for imaging optical properties with structured illumination beyond

the diffusion theory regime [J]. J Biomed Opt, 2010, 15(3): 036013.

- 15 R Zhang, W Verkruysse, B Choi, et al.. Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms [J]. J Biomed Opt, 2005, 10(2): 024030.
- 16 S A Prahl, M Keijzer, S L Jacques, et al.. A Monte Carlo model of light propagation in tissue [J]. SPIE Institute Series, 1989, IS5: 102-111.
- 17 L H Wang, S L Jacques, L Q Zheng. MCML: Monte Carlo modeling of light transport in multi-layered tissues [J]. Computer Methods Programs in Biomedicine, 1995, 47(2): 131-146.
- 18 E Alerstam, T Svensson, S Andersson-Engels. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration [J]. J Biomed Opt, 2008, 13(6): 060504.
- 19 E Alerstam, W C Y Lo, T D Han, *et al.*. Next-generation acceleration and code optimization for light transport in turbid media using GPUs [J]. Biomed Opt Express, 2010, 1(2): 658-675.
- 20 F H Cai, S L He. Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium [J]. J Biomed Opt, 2012, 17(4): 040502.
- 21 F Herrera, M Lozano, J L Verdegay. Tackling real-coded genetic algorithms: operators and tools for behavioural analysis [J]. Artificial Intelligence Review, 1998, 12(4): 265-319.
- 22 V Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Second Edition [M]. Washington: SPIE Press, 2007. 145-191.

栏目编辑:韩 峰